Blood and Gas Transfer

James Tucker
MD/PHD Program (Year 3)
University of Utah School of Medicine
University of Utah Neuroscience Program james.tucker@hsc.utah.edu

Cellular Respiration

- Converts dietary nutrients into cellular fuel (primarily ATP)
- Corisurnes O_{2}
- Generates CO_{2}

The Citric Acid Cycle

Acetyl－COA
3 NAD＋ FAD

GDP Pi

2 H 2 O

COA－SH
3 NADH
$3 \mathrm{H}+$
FADH2
GTP
－コ ごすこ

Mitochondria
 The cellular powerhouse

Mitochondria
 The cellular powerhouse

Mitochondrial Electron Transport Chain

intermembrane

space | low pH |
| :--- |
| high |
| H^{+} | concentration

What role does blood play?

- Red Blood Cells:

Transport O_{2} from the air to the tissues

- Help transport CO_{2} from the tissues to the air

Red Blood Cells

- Made in Bone Marrow

Erythropoeitin (EPO)

- Expel organelles, including nucleus
- Can't make protein

」 120 day lifespan

- Destroyed by spleen
- Mostly Hemoglobin (Hb)

Red Blood Cells

- Gas transfer into and out of the cell is proportional to surface area/volume ratio
- Specialized "biconcave" membrane shape maximizes surface area/volume ratio
- Hb acts as O2/CO2 carrier

Hemoglobin

- Blood plasma can carry very little dissolved oxygen in solution ($\sim 2 \%$)
- Hemogjlobin is required to carry the vast majority of the oxygen (98\%)

Hemoglobin

- If the body had to depend upon dissolved oxygen in the plasma to supply oxygen to the cells, the heart would have to pump 140 liters per minute (instead of 4 liters per minute).

Hemoglobin

- Each red blood cell can carry about one million molecules of oxygen
- Hemoglobin is 97\% saturated when it leaves the lungs
- Under resting conditions is it about 75% saturated when it returns.

Hemoglobin

- Hemoglobin has two protein components: a) pha and beta
-2 alpha +2 beta
- Work together to bind and release oxygen

helical shape of the polypeptide molecule

Porphyrin Ring

- At the core of the molecule is porphyrin ring which holds an iron atom.
An iron containing porphyrin is termed a heme.
- This iron atom is the site of oxygen binding.

The Delivery Problem

- Do we want Hb to have a high or low affinity for oxygen?
- BOTH!
- Lungs: high affinity
- Hb steals O2 from air
- Tíssue: low affinity
- Hb gives up O 2 to cells
- Can we have our cake and eat it too?

T and R states

－Lufsgs：oxy－Hb in the f－sticice
－Hb＂relaxed＂，exposing O_{2} binding sites
」
－ケృラまリes：deoxy－Hb in the －J－ずらごこ
$\lrcorner \mathrm{O}_{2}$ binding sites ＂tightly＂guarded

Cooperativity - Lungs

- All four O_{2} binding sites don't bjus D , all at once
- Once the first heme binds oxygen, it introduces small changes in the structure of that alpha or beta chain, starting the $\varsigma \rightarrow i\}$ transition
Each successive O_{2} binds more easily

Cooperativity - -iissues

- All four O_{2} binding sites don't reJease O_{2} all at once either
- Once the first heme releases oxygen, it introduces smalll changes in the structure of that alpha or beta chain, starting the $\stackrel{f}{ } \rightarrow-〕$ transition
- Each successive O_{2} releases more easily

Bohr Effect

- Hemoglobin is also pH sensitive
- CO_{2} is an acid in water (blood)
- Lurigs \rightarrow low $\mathrm{CO}_{2} \rightarrow$ "base" environment encourages or.ygeri bincling fl-staice
- -issues \rightarrow high $\mathrm{CO}_{2} \rightarrow$ "acid" environment encourages orygers releasinig 「--staite

2,3-Bisphosphoglycerate (DPG)

- Production induced by hypoxia (altitude, exercise, etc.)
- Binds to Hb to stabilize the - star te (low eiffinjity for O2)
- Causes Hb to give up O 2 to the tissues
 more easily

What role does blood play?

- Red Blood Cells:

Transport O_{2} from the air to the tissues

- Help transport CO_{2} from the tissues to the air

Removal of CO_{2} by RBCs

- Like O_{2} very little CO_{2} dissolves directly in the blood
- Carbonic anhydrase (in RBCs) catalyzes conversion to bicarbonate and acid (water soluble)
- Increases the CO_{2} carrying capacity of the blood
- Deoxy-Hb can also bind a small amount of CO_{2}
carbonic anhydrase
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\downarrow \uparrow$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
$\downarrow \uparrow$
$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$

Removal of CO_{2} by RBCs

$-\mathrm{CO}_{2}$ is an acid in water (blood)

- Bohr Effect:
- Tissues \rightarrow high $\mathrm{CO}_{2} \rightarrow$ "acid" environment encourages oxygen releasing T-state Hb
- Lungs \rightarrow low $\mathrm{CO}_{2} \rightarrow$ "base" environment encourages oxiygeri bincling P-state it'b
carbonic anhydrase
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\downarrow \uparrow$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
$\downarrow \uparrow$
$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$

Blood Gas Measurements

- Arterial Blood Gases
- $\mathrm{pH} / \mathrm{pO}_{2} / \mathrm{pCO}_{2} / \mathrm{HCO}_{3}^{-}$
- pH: 7.36-7.44
- $\mathrm{pO}_{2}: 75-100 \mathrm{mmHg}$
- $\mathrm{pCO}_{2}: 35-45 \mathrm{mmHg}$
- $\mathrm{HCO}_{3}: 22-30 \mathrm{mmol} / \mathrm{L}$
- Verious Blood Gases
- $\mathrm{pH} / \mathrm{pO}_{2} / \mathrm{pCO}_{2} / \mathrm{HCO}_{3}^{-}$
- $\mathrm{pH}: 7.32-7.42(-0.04)^{*}$.
- $\mathrm{pO}_{2}: 25-40 \mathrm{mmHg}(-60)$
- $\mathrm{pCO}_{2}: 40-50 \mathrm{mmHg}(+5)$
- $\mathrm{HCO}_{3}: 22-30 \mathrm{mmol} / \mathrm{L}(\sim)$ (more on this in renal lectures)

摂 Note: pH values don't change much. Deoxy-Hb in venous blood acts as a buffer to counteract the acidity of the CO_{2}. This is an example of a "homeostatic" mechanism.

相. This difference in pH, while small, is the key to the respiratory drive

Hyperventilation

$-\downarrow \mathrm{CO}_{2} \rightarrow \uparrow \mathrm{pH}$ (more basic)
د "respiratory alkalosis"

- Occurs normally during exercise $\left(\uparrow \mathrm{O}_{2}\right)$
- Can also be a compensation for acidic blood
- Methanol / ethylene glycol ingestion
- Kidney failure

Diabetic ketoacidosis

- All very darigerous!

Hypoventilation

$-\uparrow \mathrm{CO}_{2} \rightarrow \downarrow \mathrm{pH}$ (more acidic)
د "respiratory acidosis"
\lrcorner Never normal! Very clangerous! $\left(\mathrm{lO}_{2}\right)$

- Usually indicates failure of the respiratory drive - Drug overdose (Opiaites, Berizos, Barbies, GiHB, etc.)

Brain damage / spinal cord damage

- MS, Polio, etc.

Diseases of Red Blood Cells

- Iron Deficiency
- Sickle Cell Anemia
-Thalassemia
Porphyria
Malaria

Normal Peripheral Blood Smear

Iron Deficiency

- Iron deficient red blood cells
- Low number of cells
- Note the hollow and blanched appearance of the red blood cells

Sickle Cell anemia

- Genetic disorder characterized by hard, sticky, sickle-shaped red blood cells
- This disease is caused by a mutation in hemoglobin
- Causes RBCs to get stuck in tissues
- Painful, even fatal

Thalassemia

- Each hemoglobin needs 2 alphas and 2 betas
- Need the SAME NUMBER of alphas and betas
- Deficiency of either causes deficiency of hemoglobin
- Leftovers are bad too can aggregate and form "inclusion bodies" that harm the cell

- The result is anemia - not enough red blood cells

Porphyria

- Porphyria is a group of different disorders caused by abnormalities in the chemical steps leading to the production of heme
- It is characterized by extreme sensitivity to light (exposure to sunlight causes vesicular erythema), reddish-brown urine, reddish-brown teeth, and ulcers which destroy cartilage and bone, causing the deformation of the nose, ears, and fingers. Mental aberrations, such as hysteria, manic-depressive psychosis, and delirium, characterize this condition as well.

Malaria

- Anopheles mosquito
- Equatorial distribution
- Parasite infects RBCs
- Conditions that decrease RBC lifespan infer resistance (SCA, thalasemia, etc.)
- Race-specific disease
 incidence

Question 1

- Which of the following is true of the process of cellular respiration:
A) Generates O 2 , Consumes CO 2
B) Consumes 02 , Generates CO 2
C) Causes overall increase in ATP
D) Causes overall decrease in ATP
- E) $A+C$
- F) $A+D$
-G) $B+C$
-H) $B+D$

Question 2

Erythropoeitin (EPO) has which of the following effects:
A) Shifts Hb oxygenation curve to the right

- B) Shifts Hb oxygenation curve to the left
- C) Increase in hematocrit ($\uparrow \#$ of RBCs)
- D) Decrease in hematocrit (\downarrow \# of RBCs)
- E) $A+C$
- F) $A+D$
- G) $B+C$
H) $B+D$

Question 3

- Which of the following is true of red blood cells:
A) They have a biconvex cellular membrane
- B) They consume less O_{2} than the average cell
\lrcorner C) They are normally very rigid and inflexible
- D) They are increased in number in anemia
- E) All of the above

Question 4

- Which combination makes a normal Hb molecule:
A) $2 \alpha, 2 \beta, 2$ porphyrin rings, 2 Fe atoms
- B) $4 \alpha, 4 \beta, 4$ porphyrin rings, 4 Fe atoms
C) $4 \alpha, 4 \beta, 4$ porphyrin rings, 4 Fe atoms
(D) $2 \alpha, 2 \beta, 4$ porphyrin rings, 4 Fe atoms

Question 5

- Which is true for a normal Hb molecule:
A) T state in Tissues, low affinity for O 2
- B) T state in Lungs, low affinity for O 2
- C) R state in Tissues, high affinity for O 2
D) R state in Lungs, high affinity for O 2
- E) $A+C$
-F) $A+D$
G) $B+C$
H) $B+D$

Question 6

- Cooperativity has what effect on the $\mathrm{Hb}-\mathrm{O}_{2}$ dissociation curve:
A) Gives the curve a sigmoid shape
- B) Shifts the curve up
- C) Shifts the curve down
- D) Shifts the curve left
- E) Shifts the curve right

Question 7

- By the Bohr effect, an increase in CO_{2} has what effect on the $\mathrm{Hb}-\mathrm{O}_{2}$ dissociation curve:
A) Gives the curve a sigmoid shape
- B) Shifts the curve up
- C) Shifts the curve down
- D) Shifts the curve left
-E) Shifts the curve right

Question 8

- By binding 2,3-BPG with less affinity, fetal Hb has which characteristic change in its $\mathrm{Hb}-\mathrm{O}_{2}$ dissociation curve :
A) Gives the curve a sigmoid shape
- B) Shifts the curve up
C) Shifts the curve down
-(D) Shifts the curve left
E) Shifts the curve right

