Blood and Gas Transfer

James Tucker MD/PHD Program (Year 3) University of Utah School of Medicine University of Utah Neuroscience Program james.tucker@hsc.utah.edu

Cellular Respiration

Converts dietary nutrients into cellular fuel (primarily ATP)
 Consumes O₂
 Generates CO₂

The Citric Acid Cycle

Acetyl-CoA 3 NAD+ FAD GDP Pi 2 H2O

CoA-SH 3 NADH 3 H+ FADH2 GTP + 2 CO2

Mitochondria The cellular powerhouse

Mitochondria The cellular powerhouse

Mitochondrial Electron Transport Chain

What role does blood play?

Red Blood Cells:

- Transport O₂ from the air to the tissues
- Help transport CO₂ from the tissues to the air

Red Blood Cells

 Made in Bone Marrow
 Erythropoeitin (EPO)
 Expel organelles, including nucleus
 Can't make protein
 120 day lifespan
 Destroyed by spleen
 Mostly Hemoglobin (Hb)

Red Blood Cells

Gas transfer into and out of the cell is proportional to surface area/volume ratio

 Specialized "biconcave" membrane shape maximizes surface area/volume ratio
 Hb acts as O2/CO2 carrier

 Blood plasma can carry very little dissolved oxygen in solution (~2%)

Hemoglobin is required to carry the vast majority of the oxygen (98%)

If the body had to depend upon dissolved oxygen in the plasma to supply oxygen to the cells, the heart would have to pump 140 liters per minute (instead of 4 liters per minute).

- Each red blood cell can carry about one million molecules of oxygen
- Hemoglobin is 97% saturated when it leaves the lungs
- Under resting conditions is it about 75% saturated when it returns.

Hemoglobin has two protein components: alpha and beta ► 2 alpha + 2 beta Work together to bind and release oxygen

Porphyrin Ring

- At the core of the molecule is <u>porphyrin</u> ring which holds an iron atom.
- An iron containing porphyrin is termed a <u>heme</u>.
 This iron atom is the site of oxygen binding.

The Delivery Problem

Do we want Hb to have a high or low affinity for oxygen? ► BOTH! Lungs: high affinity Hb steals O2 from air ► Tissue: low affinity Hb gives up O2 to cells Can we have our cake and eat it too?

T and R states

Cooperativity - Lungs

 All four O₂ binding sites don't bind O₂ all at once
 Once the first heme binds oxygen, it introduces small changes in the structure of that alpha or beta chain, starting the T → R transition

- Each successive O₂ binds more easily
 - O₂ loads quickly

Cooperativity - Tissues

- All four O₂ binding sites don't release O₂ all at once either
- Once the first heme releases oxygen, it introduces small changes in the structure of that alpha or beta chain, starting the
 R → T transition
- Each successive O₂ releases more easily
 - O₂ unloads quickly

Bohr Effect

- Hemoglobin is also pH sensitive
- CO₂ is an acid in water (blood)
- ► Lungs → low CO₂ → "base" environment encourages oxygen binding R-state
- ► Tissues → high CO₂ → "acid" environment encourages oxygen releasing T-state

2,3-Bisphosphoglycerate (DPG)

Production induced by hypoxia (altitude, exercise, etc.) Binds to Hb to stabilize the T state (low affinity for O2) Causes Hb to give up O2 to the tissues more easily

What role does blood play?

Red Blood Cells:

- Transport O₂ from the air to the tissues
- Help transport CO₂ from the tissues to the air

Removal of CO₂ by RBCs

- Like O₂, very little CO₂ dissolves directly in the blood
- Carbonic anhydrase (in RBCs) catalyzes conversion to bicarbonate and acid (water soluble)
- Increases the CO₂ carrying capacity of the blood
- Deoxy-Hb can also bind a small amount of CO₂

carbonic anhydrase $CO_{2} + H_{2}O$ ↓ ↑ H_2CO_3 \ ↑ $HCO_{3^{-}} + H^{+}$

Removal of CO₂ by RBCs

 \blacktriangleright CO₂ is an acid in water (blood) ► Bohr Effect: ■ Tissues \rightarrow high CO₂ \rightarrow "acid" environment encourages oxygen releasing T-state Hb ■ Lungs \rightarrow low CO₂ \rightarrow "base" environment encourages oxygen binding R-state Hb

carbonic anhydrase $CO_{2} + H_{2}O$ ↓ ↑ H_2CO_3 ↓ ↑ H+ HCO₃-

Blood Gas Measurements

Arterial Blood Gases
 pH / pO₂ / pCO₂ / HCO₃⁻
 pH: 7.36-7.44
 pO₂: 75-100 mmHg
 pCO₂: 35-45 mmHg
 HCO₃⁻: 22-30 mmol/L

- Venous Blood Gases
- ▶ pH / pO₂ / pCO₂ / HCO₃⁻
 - pH: 7.32-7.42 (-0.04)*
 - pO₂: 25-40 mmHg (-60)
 - pCO₂: 40-50 mmHg (+5)
 - HCO₃⁻: 22-30 mmol/L (~) (more on this in renal lectures)

* Note: pH values don't change much. Deoxy-Hb in venous blood acts as a buffer to counteract the acidity of the CO_2 . This is an example of a "homeostatic" mechanism.

* This difference in pH, while small, is the key to the respiratory drive

Hyperventilation

► $\downarrow CO_2 \rightarrow \uparrow pH$ (more basic)

- "respiratory alkalosis"
- Occurs normally during exercise ([↑]O₂)
- Can also be a compensation for acidic blood
 Methanol / ethylene glycol ingestion
 - Kidney failure
 - Diabetic ketoacidosis
 - All very dangerous!

Hypoventilation

↑CO₂ → ↓pH (more acidic) "respiratory acidosis" Never normal! Very dangerous! (↓O₂) Usually indicates failure of the respiratory drive Drug overdose (Opiates, Benzos, Barbies, GHB, etc.) Brain damage / spinal cord damage MS, Polio, etc.

Diseases of Red Blood Cells

Iron Deficiency
Sickle Cell Anemia
Thalassemia
Porphyria
Malaria

Normal Peripheral Blood Smear

Iron Deficiency

Iron deficient red blood cells
Low number of cells
Note the hollow and blanched appearance of the red blood cells

Sickle Cell anemia

- Genetic disorder characterized by hard, sticky, sickle-shaped red blood cells
- This disease is caused by a mutation in hemoglobin
- Causes RBCs to get stuck in tissues
 Painful, even fatal

Thalassemia

- Each hemoglobin needs 2 alphas and 2 betas Need the SAME NUMBER of alphas and betas Deficiency of either causes déficiency of hemoglobin Leftovers are bad too
 - can aggregate and form "inclusion bodies" that harm the cell
- The result is anemia not enough red blood cells

Porphyria

- Porphyria is a group of different disorders caused by abnormalities in the chemical steps leading to the production of heme
- It is characterized by extreme sensitivity to light (exposure to sunlight causes vesicular erythema), reddish-brown urine, reddish-brown teeth, and ulcers which destroy cartilage and bone, causing the deformation of the nose, ears, and fingers. Mental aberrations, such as hysteria, manic-depressive psychosis, and delirium, characterize this condition as well.

Malaria

Anopheles mosquito Equatorial distribution ► Parasite infects RBCs Conditions that decrease RBC lifespan infer resistance (SCA, thalasemia, etc.) Race-specific disease incidence

Which of the following is true of the process of cellular respiration: A) Generates O2, Consumes CO2 B) Consumes O2, Generates CO2 C) Causes overall increase in ATP D) Causes overall decrease in ATP ■ E) A + C ■ F) A + D - G) B + C

H) B + D

- Erythropoeitin (EPO) has which of the following effects:
 - A) Shifts Hb oxygenation curve to the right
 - B) Shifts Hb oxygenation curve to the left
 - C) Increase in hematocrit (↑ # of RBCs)
 - D) Decrease in hematocrit (# of RBCs)
 - E) A + C
 - F) A + D
 - G) B + C
 - H) B + D

Which of the following is true of red blood cells:
A) They have a biconvex cellular membrane
B) They consume less O₂ than the average cell
C) They are normally very rigid and inflexible
D) They are increased in number in anemia
E) All of the above

Which combination makes a normal Hb molecule:
A) 2 α, 2 β, 2 porphyrin rings, 2 Fe atoms
B) 4 α, 4 β, 4 porphyrin rings, 4 Fe atoms
C) 4 α, 4 β, 4 porphyrin rings, 4 Fe atoms
D) 2 α, 2 β, 4 porphyrin rings, 4 Fe atoms

Which is true for a normal Hb molecule:
A) T state in Tissues, low affinity for O2
B) T state in Lungs, low affinity for O2
C) R state in Tissues, high affinity for O2
D) R state in Lungs, high affinity for O2
E) A + C
F) A + D
G) B + C
H) B + D

Cooperativity has what effect on the Hb-O₂ dissociation curve:

A) Gives the curve a sigmoid shape

B) Shifts the curve up

C) Shifts the curve down

D) Shifts the curve left

E) Shifts the curve right

By the Bohr effect, an increase in CO₂ has what effect on the Hb-O₂ dissociation curve:

A) Gives the curve a sigmoid shape

- B) Shifts the curve up
- C) Shifts the curve down
 D) Shifts the curve left
- E) Shifts the curve right

By binding 2,3-BPG with less affinity, fetal Hb has which characteristic change in its Hb-O₂ dissociation curve :

A) Gives the curve a sigmoid shape

- B) Shifts the curve up
- C) Shifts the curve down
- D) Shifts the curve left
- E) Shifts the curve right

