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ABSTRACT 
Phenotyping cells and tracking their functional states are 
key tasks in cell biology and molecular medicine. Current 
cell classification methods are idiosyncratic to specific 
fields and based on ad hoc discovery of presumed univari-
ate markers. We propose a general theory of phenotyping 
based on broadly distributed multivariate markers as the 
metrics of classification and standard pattern recognition 
algorithms as the method of class discovery. We present a 
real-world test case based on the vertebrate retina and 
demonstrate that pattern recognition methods can extract 
singular populations of neurons from complex heterocellu-
lar arrays: populations visualized solely as elements in a 
micromolecular N-space. The applications of this compu-
tational approach to cell phenotyping range from phyloge-
netics to drug discovery to environmental monitoring 
 

1 INTRODUCTION 
Vertebrate nervous systems are arrays of ≈ 103-104 differ-
ent neuronal phenotypes. Mammalian retinas, regardless 
of species or eye size, are composed of 55-60 classes of 
retinal neurons [1] in copy numbers ranging from 50 to 
500,000/mm2. But this is a tabulation based on decades of 
piece-wise morphologic work and no metric or analytical 
method has comprehensively parsed all classes. Tracking 
cell classes is essential to functional analysis of any cell 
system. The paucity of candidate probes and persistent 
uncertainties regarding phenotyping criteria, [2-6] have 
impeded discovery of solutions. Even so, Famiglietti [3] 
expressed the consensus view “…that ‘natural’ cell types 
emerge as distinct clusters of points in parametric space.”  
He and others expected that the dimensions of this space 
would be morphologic rather than chemical. However, 
morphology emerges from a molecular space. 
 
Modern molecular biology has formalized cellular bio-
chemistry as serial interacting compartments: genome → 
transcriptome → proteome → cytosome. In theory, pat-
terns of transcribed genes and expressed proteins comprise 
a given cell’s macromolecular phenotype, prompting 
searches for cell-specific mRNA or protein signals. The 
preliminary successes of gene [7] and protein [8] microar-
rays for screening tissues or purified cell cohorts have not 
been replicated in complex heterocellular tissues, even 
though a cell is a pre-printed array. Concurrent probes of 
multiple genes or proteins with single-cell resolution are 
still difficult to implement. Neuroscientists have sought 
univariate macromolecular markers for phenotyping, hop-

ing to slowly assemble probe libraries to track multiple 
cell classes [9]. The strategy has defects: univariate probes 
need not exist; probe discovery is ad hoc; and no ground 
truth exists for probe validation. Part of the problem is 
diversity: each mammalian cell expresses some 1000-5000 
proteins encoded from a set of ≈ 33,000 transcriptional 
units [10]. For which proteins should we screen and how? 
Finally, the expected number of phenotypes in heterocellu-
lar tissues is often unknown.  

 
An alternative strategy involves abandoning the search for 
univariate probes to exploit the fact that every cell also 
possesses a simpler micromolecular mixture of 100-200 
major metabolic reactant monomers (amino acids, carbox-
lyates, nucleic acids, etc.). While virtually none are uni-
variate markers, their steady-state values vary across 
known cell classes, leading to the obvious notion that in-
trinsic N-dimensional signatures may prove to be the 
comprehensive classifiers. Furthermore, extrinsic tracer 
molecules can be embedded in data sets as surrogates for 
detection of expressed of ion channels, receptors, and 
transporters [11]. Sensitive, robust, immunoglobulin (IgG) 
probe libraries for micromolecular mixtures have been 
developed [11-14] and are applicable all cell types in all 
tissues and taxa with constant fidelity. We here describe 
the use of classical unsupervised pattern recognition [15-
17] as a comprehensive and general tool for segmentation 
and class discovery, independent of morphology. We also 
show that previously invisible structural attributes (e.g. 
spatial patterning of classes) become test statistics for 
validation when unmasked by classification.  
 

2 MATERIALS & METHODS 
There are three steps to phenotyping complex cell popula-
tions: (1) generating arrays of high-resolution targets seri-
ally probed with a designed IgG library; (2) acquiring sta-
ble, calibrated registered image data; (3) clustering mul-
tichannel data and exploring classifications. We describe a 
general case based on analysis of a 2D heterocellular ar-
ray: the mammalian retinal ganglion cell layer. 
 

2.1 Probed Target Arrays 
 
Standard glutaraldehyde quenched, resin embedded retinal 
samples were sectioned by ultramicrotomy into serial 
sample arrays of 40-250 nm thickness on multiwell pat-
terned slides [12] and each well probed with one or more 
IgGs from a library targeting a spectrum of micro-
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molecules. As a typical cell is ≈ 10 µm in diameter, serial 
250 nm sections yield forty consecutive samples. Signals 
are visualized with wide-dynamic range, photostable silver 
detection from a basis set of six intrinsic channels detect-
ing aspartate [D], γ-aminobutyrate (GABA, γ), glycine 
[G], glutamate [E], glutamine [Q] and taurine [τ] and one 
extrinsic channel (1-amino-4-guanidobutane, AGB) that 
reports the excitatory history of the neurons prior to fixa-
tion [11]. In the case illustrated here, the neurons were 
activated in vitro with 25 µM AMPA 
. 

2.2 Data Acquisition 
 
Calibrated images of silver-intensified signals were cap-
tured as 8-bit frames under fixed gain, gamma and source 
irradiance with a DAGE CCD camera using standard 
brightfield imaging at a resolution of 243 nm/pixel. Com-
plete image datasets ranged from 0.5-3.5 Gb. The key to 
extracting signatures is image registration. Code devel-
oped for planetary imaging (PCI Geomatics, Richmond, 
Canada) was used to mosaic individual frames into com-
prehensive channels and align all serial channels with 1st 
or 2nd order transforms. In principle, then, every pixel in a 
cell indexes an N-space micromolecular signature. 
 

2.3 Classification and Exploration 
 
Formal classification of N-dimensional datasets is essen-
tial to visualization of underlying cell populations. One 
cannot visually screen R image sets for correlations (R = 1 
monochrome, 2 duochrome, 3 standard rgb trichrome), as 
the number of unique images U is combinatorial with the 
number of channels N [U = C(N,R)] and we don’t know 
the dimensionality of classification a priori. Datasets were 
clustered using a number of methods, including K-means, 
isodata, and Narendra-Goldberg algorithms, using com-
mercial (PCI Geomatics) and custom code (IDL, RSI, 
Boulder, Co). In practice, isodata clustering was effective, 
fast and produced results identical to the other methods. 
Cluster separability was evaluated by transformed diver-
gence and calculated as probability of error pe. In some 
cases, a derived cluster was clearly a superclass of struc-

tures and other methods such as histogram deconvolution 
were used to further segment the population. Structural 
datasets were visualized by remapping derived theme 
classes onto a single morphological channel, their signa-
tures explored by use of superimposed bivariate 2N-
plots[13], a scheme inspired by the parallel coordinate 
space described by Inselberg and Dimsdale [18]. Pairs of 
signals were displayed as class means bounded by 2 SD 
margins on axes spanneding 0.1–10 mM with logarithmic 
scaling. The [x,y] pairs were coded: [AGB, AGB] gray; 
[E, γ] orange; [D, Q] cyan; [G, τ] magenta. Class signifi-
cance was tested in part by cells sizes and patterning order 
in cell distributions (Voronoi tiling, mean spacing distribu-
tions). Ordered patterning was gauged by conformity ra-
tios (CR), the mean intercell spacing/spacing variance 
ratio, using the significance tables of Cook [19]. 
 

3 RESULTS 

3.1 The Classified ganglion cell layer 
 
A representative input dataset for pattern recognition is 
shown in Fig.1, with density-coded images.  While it is 
clear that there are dramatic differences in signal pattern-
ing across images, no obvious strategy for segmentation in 
visually accessible 1, 2, or 3 space emerges. It is useful to 
note, at this point, that these data are unlike multispectral 
images in a very important way: the channels are already 
explicitly orthogonal. The glutamate content of cells has 
no representation in any other channel, thus approaches 
such as PCA have no obvious value for this problem. That 
does not mean that the glutamate content of a cell is uncor-
related with the presence of other molecular species, but 
those correlations are also not necessarily monotonic or 
time stationary.  
 
The results of isodata clustering are summarized in Fig. 2, 
which is a refined theme map of classifications. Raw 
theme maps include an unavoidable error that plagues 
anatomists. A misalignment kerf is built up around each 
structure as one sections though these spheroids, resulting 
in a ring of poorly correlated signals around each cell, 
 
Figure 1. Excitation (AGB) and intrinsic (D E G Q τ γ) micro molecular signals in the rabbit ganglion cell layer visu-
alized in an array of seven registered serial 250 nm sections. Each spot represents a single neuron with sizes ranging 
from 8-35 µm in diameter. 
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corrupting size assessments [12]. Refined theme maps are 
built by using one channel as a structuring object image 
(e.g. glutamate) and mapping the aligned theme class to 
each cell/object. Isodata clustering alone results in 10 
natural ganglion cell superclasses/classes and 3 natural 
amacrine cell classes. Superclass 1 is obviously a mixture 
of different size groups and can be segregated into classes 
1a,b,c by size histogram deconvolution [13]. Another su-
perclass demonstrated clear bimodality in D and γ space, 
yet the subclusters were not separable by our criterion pe. 
In this case we deconvolved the signal histograms and 
assigned cells to classes based on a winner-take-all crite-
rion. The result of this chemical separation was the emer-
gence of two size groupings of cells: class 5 with a diame-
ter of 16.2 ± 2.5 µm and class 9 with a diameter of 34.0 ± 
2.1 µm, significantly different at p <0.01 by t-test. Thus, in 
the end, we achieve 14 ganglion cell and 3 amacrine cell 
classes, consistent with the dye injection, photofilling and 
ballistic dye imaging data of Rockhill et al. [20]. 
 

3.2 Independent Tests of Classification Significance 
 
Classification is blind to structure in our implementation, 
though it needn’t be. But how do we know any of these 
classifications are real?  How do we know that they are 
natural classes or functional biologic entities? Fortunately 
some simple tests emerge. For example, we already knew 
from other work that starburst amacrine cells represent 

30% of the ganglion cell layer, that they are the smallest of 
the cells, are patterned with a CR of 2, have a robust γ 
signature and are extremely AMPA sensitive. Class 14 of 
our clustering results finds these cells based only on the 7-
space molecular classification, but reveal them to be 
32.7% of all cells, the smallest cells at 8.0 µm, patterned 
with a CR of 2.3, and the most AMPA sensitive cell in the 
cohort. More importantly, patterns of cells previously un-
seen emerge. Fig. 3 shows the distribution of class 6 gan-
glion cells that we have identified as a specific physiologic 
type based on comparisons with published data. These and 
other classes were non-randomly patterned with CR values 
>3. And all emergent classes turned out to be homogenous 
size groups that were significantly different from most 
other classes. Thus population fractions, hidden patterns, 
and hidden size groups emerge from classical pattern 
recognition methods applied solely to molecular data sets. 

4 CONCLUSIONS 
Pattern recognition methods are diverse and have become 
increasingly sophisticated. We demonstrate here that stan-
dard pattern recognition strategies suffice to attain a com-
prehensive classification of a neuronal cohort, for the first 
time in the history of neuroscience. While the implications 
of this approach for retinal scientists are immense, the 
theoretical implications transcend those. Micromolecular 
mixtures are, in fact, the tangible manifestation of a func-
tioning proteome, of systems relations among cells, of 

 
Figure 2. Refined theme map of the rabbit retinal gan-
glion cell layer derived from 7 molecular channels.
Each maps a unique class or superclass of ganglion
cells based solely on N-dimensional signatures. 

 
Figure 3. Class 6, OFF center sustained β ganglion
cells based on morphology and patterning, surrounded
by their Voronoi domains. This class is invisible in any
combination of raw image channels.  
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environmental cues. We have established these methods to 
be applicable to neural disease models, tracking cell mi-
grations and signature transformations [21, 22], as well as 
somatic disease models [23]. Though micromolecular 
probe libraries are not yet widely available, that is a minor 
barrier to application of these methods. The lack of ex-
perience of biologists with the mathematics and computa-
tional strategies underlying pattern recognition, however, 
are formidable impediments. Three solutions appear on the 
horizon. First, the “rediscovery” of pattern recognition by 
molecular biologists for analysis of gene clusters offers a 
portal for transfer of concepts to anatomists. Second, 
closer working relations are emerging between academic 
computer science and biological imaging groups. Finally, 
computer scientists might be willing to teach their col-
leagues about less challenging methods in classification 
and segmentation, even as they develop new tools. 
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